A Carbon-Free Ag–Co3O4 Composite as a Bifunctional Catalyst for Oxygen Reduction and Evolution: Spectroscopic, Microscopic and Electrochemical Characterization
نویسندگان
چکیده
A key challenge for rechargeable metal–air batteries is the development of a cost-effective bifunctional catalyst for both oxygen evolution (OER) and reduction (ORR) reactions. Here, we took the advantages of high OER activity of Co3O4 spinel and high ORR activity of Ag to develop a carbon-free oxygen electrode, e.g., for Li–air batteries. The optimized Ag + Co3O4 catalyst was further characterized and exhibited a good bifunctional activity in alkaline media. From rotating ring-disk electrode results, the mixed Ag + Co3O4 catalyst revealed significantly lower (∼320 mV) overpotential for ORR than single Co3O4, and a slightly lower overpotential than pure Ag. A four-electron pathway was also elucidated. The OER activity of the mixed catalyst is 1.5-fold compared to pure Co3O4, although the Co3O4 loading is only 10%, suggesting a large synergistic effect. The potential difference between OER and ORR (i.e., the sum of the overpotentials at 1 mA cm) is ca. 0.85 V, which is comparable to noble metal based catalysts. To better understand the origin of this synergism, an XPS analysis was performed, demonstrating that only after oxidation of the mixed catalyst, Co3O4 was reduced to Co(OH)2 at potentials of the ORR, probably due to the presence of Ag. This redox switching, which was not observed for pure Co3O4, is a probable explanation for the increased catalytic activity. The morphology and the electrochemically active surface area of Ag on the surface were examined by electron microscopy and lead-underpotential deposition, respectively. These results also show that when 88%of theAg surface is blocked byCo3O4 particles, the residual 12% free Ag sites altogether have a higher activity for ORR than the (100%) pure Ag surface, i.e., the activity per Ag site is increased by more than a factor of 10. The combination of low cost and high performance endows this catalyst as a promising candidate for energy devices, and the present synergistic effect opens a new track for high activity.
منابع مشابه
Structural, magnetic and dielectric properties of pure and Dy-doped Co3O4 nanostructures for the electrochemical evolution of oxygen in alkaline media
In this study, spinel-type cobalt oxide (Co3O4) and Co3-xDyxO4 (x = 0.04 and 0.05 molar ratio) nanoparticles were synthesized via combustion method at 700 °C. Crystallite nature, phase purity and thermal analysis of the prepared compounds were investigated by PXRD, FT-IR and TGA techniques. Structural analyses were performed by the FullProf program employing profile matching with constant scale...
متن کاملCo3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries.
An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from e...
متن کاملN,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions.
The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template-free approach to three-dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self-assembled melamine, p...
متن کاملCobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.
Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arisi...
متن کاملBifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media
Ag is considered to be one of the best candidates for oxygen reduction reaction electrocatalysts in alkaline media for application in various electrochemical energy devices. In this study, we demonstrate that water activation is a key factor in enhancing the ORR activity in alkaline media, unlike in acid environments. Ag supported on LaMnO3 having a high oxophilicity showed a markedly higher OR...
متن کامل